
Note: In this problem set, expressions in green cells match corresponding expressions in the 
text answers.
Clear["Global`*⋆"]

3. Mapping w=z3. Draw an analog of figure 378 for w=z3.

Although there is no text answer for this problem, it is covered in the s.m. The mapping will 
be from the z-plane to the w-plane. According to polar convention, for the distance and 
angle projections, the terminology will be z=r ⅇⅈ θ and w=R ⅇⅈ ϕ. The mapping transforma-
tion consists in
R ⅇⅈ ϕ = r3 ⅇⅈ 3 θ

Clear["Global`*⋆"]

Comparing the exponents, I have for distance
w[z_] = z3

z3

and for angle
wa[θ_] = 3 θ

3 θ

The analogous example is example 1 on p. 737, with the inner radius 1, the outer radius 
3/2, and the angle of the sector from π/6 to π/3. The transforming should take place as
innerrad = w[1]

1

outerrad = w
3

2


27

8

smallangle = wa
π

6


π

2

largeangle = wa
π

3


π

The transform sketch should look something like



1 2
x

1

2

y

z-−plane

-−4 -−3 -−2 -−1 1 2 3 4
u

1

2

3

4

v

w-−plane

6 - 9 Mapping of curves
Find and sketch or graph the images of the given curves under the given mapping.

6. x = 1, 2, 3, 4, y = 1, 2, 3, 4, w = z2

7.  Rotation. Curves as in problem 6, w = I z

Clear["Global`*⋆"]

The contention of the s.m. is that this transformation represents a positive rotation by π2 . 

Proceeding to define the mapping transformation, which essentially multiplies z values by ⅈ.
u[x_, y_] = Re[ⅈ (x + ⅈ y)]

-−Im[x] -− Re[y]

2     17.1 Geometry of Analytic Functions- Conformal Mapping 737.nb



v[x_, y_] = Im[ⅈ (x + ⅈ y)]

-−Im[y] + Re[x]

u[1, y]

-−Re[y]

v[1, y]

1 -− Im[y]

Since by the problem definition the x values are a set of constants (integers here),
argot = Table[{u[c, y], v[c, y]}, {c, 1, 4}]

{{-−Re[y], 1 -− Im[y]}, {-−Re[y], 2 -− Im[y]},
{-−Re[y], 3 -− Im[y]}, {-−Re[y], 4 -− Im[y]}}

Simplify[argot, Assumptions → y ∈ Reals]

{{-−y, 1}, {-−y, 2}, {-−y, 3}, {-−y, 4}}

The above table gives the transformations for the z-values given in the constant x part of 
the problem. Plotted, they should look like

1 2 3 4 5
x (Re)

1

2

3

4

5

6

7
y (Im)

z-−plane

-−4 -−3 -−2 -−1 1 2 3 4
u (Re)

1

2

3

4

v (Im)

w-−plane

with unrestricted y values stretching out the w-plane lines horizontally.

The y value cases, with y=k=const, are done similarly. In this case
yargot = Table[{u[x, k], v[x, k]}, {k, 1, 4}]

{{-−1 -− Im[x], Re[x]}, {-−2 -− Im[x], Re[x]},
{-−3 -− Im[x], Re[x]}, {-−4 -− Im[x], Re[x]}}

Simplify[yargot, Assumptions → x ∈ Reals]

{{-−1, x}, {-−2, x}, {-−3, x}, {-−4, x}}

The above table gives the transformations for the z-values given in the constant y part of 
the problem. Plotted, they should look like
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The above table gives the transformations for the z-values given in the constant y part of 
the problem. Plotted, they should look like

-−5 -−4 -−3 -−2 -−1 1 2 3 4 5
x (Re)

1

2

3

4

5
y (Im)

z-−plane

-−4 -−3 -−2 -−1 1 2
u (Re)

1

2

3

4

v (Im)

w-−plane

with unrestricted x values stretching out the w-plane lines vertically. 

9.  Translation. Curves as in problem 6, w = z + 2 + I

Clear["Global`*⋆"]

Defining the mapping.
u[x_, y_] = Re[(x + ⅈ y) + 2 + ⅈ]

2 -− Im[y] + Re[x]

v[x_, y_] = Im[(x + ⅈ y) + 2 + ⅈ]

1 + Im[x] + Re[y]

argot = Table[{u[c, y], v[c, y]}, {c, 1, 4}]

{{3 -− Im[y], 1 + Re[y]}, {4 -− Im[y], 1 + Re[y]},
{5 -− Im[y], 1 + Re[y]}, {6 -− Im[y], 1 + Re[y]}}

Simplify[argot, Assumptions → y ∈ Reals]

{{3, 1 + y}, {4, 1 + y}, {5, 1 + y}, {6, 1 + y}}

4     17.1 Geometry of Analytic Functions- Conformal Mapping 737.nb



1 2 3 4 5
x (Re)

1

2

3

4

5

6

7
y (Im)

z-−plane

1 2 3 4 5 6 7
u (Re)

1

2

3

4

5

6

7
v (Im)

w-−plane

Each point in the above graph is moved 2 units to the right and 1 unit up. Since y already 
cruises the length of the real axis, the vertical change goes unnoticed.
yargot = Table[{u[x, k], v[x, k]}, {k, 1, 4}]

{{2 + Re[x], 2 + Im[x]}, {2 + Re[x], 3 + Im[x]},
{2 + Re[x], 4 + Im[x]}, {2 + Re[x], 5 + Im[x]}}

Simplify[yargot, Assumptions → x ∈ Reals]

{{2 + x, 2}, {2 + x, 3}, {2 + x, 4}, {2 + x, 5}}

-−5 -−4 -−3 -−2 -−1 1 2 3 4 5
x (Re)

1

2

3

4

5
y (Im)

z-−plane

-−5 -−4 -−3 -−2 -−1 1 2 3 4 5
u (Re)

1

2

3

4

5

6

7
v (Im)

w-−plane

Each point in the above graph is moved 2 units to the right and 1 unit up. Since x already 
travels the length of the real axis, the horizontal change goes unnoticed.

11 - 20 Mapping of regions
Sketch or graph the given region and its image under the given mapping.
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11. Abs[z] ≤
1

2
,

-−π

8
< Arg[z] <

π

8
, w = z2

Clear["Global`*⋆"]

Tracing the influence of the transformation on the z-plane, I see that

Rⅇⅈ ϕ ⩵ w ⩵ f[z] ⩵ fr ⅇⅈ θ ⩵ z2 ⌊z=r ⅇⅈ θ ⩵ r ⅇⅈ θ
2
⩵ r2 ⅇⅈ θ

2
⩵ r2 ⅇⅈ 2 θ

In a nutshell, distances will be squared and angles doubled. The first part of the problem 
defines a circle, and the second part constrains the circle into a pie slice. The radius of the z-

circle is 12 , which when squared for the w-plane becomes 14 . Meanwhile the arc of the z-

slice is increased from (-− π
8 min, π

8 max up to w-slice (-− π
4min, π4max). 

The sketch:

-−0.6 -−0.4 -−0.2 0.2 0.4 0.6
Re

-−0.6

-−0.4

-−0.2

0.2

0.4

0.6

Im

z-−plane

π𝜋

4

-−0.6 -−0.4 -−0.2 0.2 0.4 0.6
Re

-−0.6

-−0.4

-−0.2

0.2

0.4

0.6

Im

w-−plane

π𝜋

2

I see now that just using Graphics>Circle would have been a somewhat quicker effort than 
the ParametricPlot.

13.  2 ≤ Im[z] ≤ 5, w = I z

Clear["Global`*⋆"]

Problem 7 told me that the mapping w=ⅈ z is a positive rotation of π2 . The mapping is the 

same in this problem,
u[x_, y_] = Re[ⅈ (x + ⅈ y)]

-−Im[x] -− Re[y]
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v[x_, y_] = Im[ⅈ (x + ⅈ y)]

-−Im[y] + Re[x]

The mapping will depend on the changes done to the boundary lines, so I will do them one 
at a time
{u[x, 2], v[x, 2]}

{-−2 -− Im[x], Re[x]}

Simplify[%, Assumptions → x ∈ Reals]

{-−2, x}

{u[x, 5], v[x, 5]}

{-−5 -− Im[x], Re[x]}

Simplify[%, Assumptions → x ∈ Reals]

{-−5, x}

The mapped boundary lines will be at u = -−2, u = -−5, and the w-points inside will be the 
new territory.

-−4 -−3 -−2 -−1 1 2 3 4
x Re

1

2

3

4

5

6

y Im

z-−plane

-−4 -−3 -−2 -−1 1 2
u Re

1

2

3

4

5

6

v Im

w-−plane

15. Absz -−
1

2
 ≤

1

2
, w =

1

z

Clear["Global`*⋆"]

The s.m. covers this problem, first noting that the circle equation can be manipulated

x -−
1

2

2
+ y2 ⩵

1

2

2
⟹ x2 -− x +

1

4
+ y2 ⩵

1

4
⟹ x2 + y2 -− x ⩵ 0

while also pulling in an expression incorporating the conjugate (found on p. 613 in num-
bered line (3))
x2 + y2 ⩵ Abs[z]2 ⩵ z z;
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and noting that

x ⩵
z + z;

2

follows from the definition of the conjugate, the circle equation is recast as

z z; -−
z + z;

2
⩵ 0

which is interesting, but which will not be pursued further.

Instead I will make use of the transformation mapping equations:

u[x_, y_] = Re(x + ⅈ y)-−1

Re
1

x + ⅈ y


v[x_, y_] = Im(x + ⅈ y)-−1

Im
1

x + ⅈ y


com[x_, y_] = {u[x, y], v[x, y]}

Re
1

x + ⅈ y
, Im

1

x + ⅈ y


to calculate some resulting transformation mapping of some points in the circle, like the 
center (yellow).

u
1

2
, 0

2

v
1

2
, 0

0

The following cell shows the mapped circle will be stretched way out there on the u axis.
u[0.001, 0]

1000.

I will work through the equivalence line. However, this is not really for application, just 
for interest.

Rⅇⅈ ϕ ⩵ w ⩵ f[z] ⩵ fr ⅇⅈ θ ⩵ z-−1 ⌊z=r ⅇⅈ θ ⩵ r ⅇⅈ θ
-−1

⩵ r-−1 ⅇⅈ θ
-−1

⩵ r-−1 ⅇ-−ⅈ θ

The below cell has a plot which doesn’t work, but I’m leaving it in anyway (the correct 
approach is in the cell after next). The problem is that the trig formatted circle formula 
causes problems when singularites are created by inverting it. It does show a illusory kind 
of promise, in that it presents the mapped circle outline, although accompanied with an 
extraneous curve and two illegal expression warnings.
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The below cell has a plot which doesn’t work, but I’m leaving it in anyway (the correct 
approach is in the cell after next). The problem is that the trig formatted circle formula 
causes problems when singularites are created by inverting it. It does show a illusory kind 
of promise, in that it presents the mapped circle outline, although accompanied with an 
extraneous curve and two illegal expression warnings.

0.2 0.4 0.6 0.8 1.0 1.2
x Re

-−0.6

-−0.4

-−0.2

0.2

0.4

0.6

y Im

z-−plane

1 2 3 4 5
x Re

1

2

3

4

5
y Im

w-−plane

The below cell shows the format that works. This time the circle maps to a single line. By 
checking the center point of the mapped circle, calculated above in yellow cells, it can be 
seen on which side of the line the body of the circle falls.
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0.2 0.4 0.6 0.8 1.0 1.2 1.4
x Re

-−0.6

-−0.4

-−0.2

0.2

0.4

0.6

y Im

z-−plane

1 2 3 4 5
u Re

-−3

-−2

-−1

1

2

3
v Im

w-−plane

A rectangle in the above plot was to show the body of the mapped circle in the w-plane, but 
it was very inaccurate. The set of nested concentric circles below gives a better idea of the 
area covered by the mapped body.

pp1 = ParametricPlotRe.1 ⅇⅈ t + 1 /∕ 2-−1
, Im.1 ⅇⅈ t

-−1
,

{t, 0, 2 π}, ImageSize → 400, PlotRange → {{0, 10}, {-−12, 12}},
AspectRatio → 0.6, PlotStyle → {Brown, Thickness[0.003]};

pp2 = ParametricPlotRe.2 ⅇⅈ t + 1 /∕ 2-−1
, Im.2 ⅇⅈ t

-−1
, {t, 0, 2 π},

ImageSize → 400, PlotStyle → {Orange, Thickness[0.003]};

pp3 = ParametricPlotRe.3 ⅇⅈ t + 1 /∕ 2-−1
, Im.3 ⅇⅈ t

-−1
,

{t, 0, 2 π}, ImageSize → 400, PlotStyle → {Red, Thickness[0.003]};

pp4 = ParametricPlotRe.4 ⅇⅈ t + 1 /∕ 2-−1
, Im.4 ⅇⅈ t

-−1
, {t, 0, 2 π},

ImageSize → 400, PlotStyle → {Green, Thickness[0.003]};

pp5 = ParametricPlotRe.5 ⅇⅈ t + 1 /∕ 2-−1
, Im.5 ⅇⅈ t

-−1
, {t, 0, 2 π},

ImageSize → 400, PlotStyle → {Blue, Thickness[0.003]};
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Show[pp1, pp2, pp3, pp4, pp5]

2 4 6 8 10

-−10

-−5

0

5

10

17. -− Log[2] ≤ x ≤ Log[4], w = ⅇz

Clear["Global`*⋆"]

Doing a little log identity,

Log
1

2
 ≤ x ≤ Log[4]

-−Log[2] ≤ x ≤ Log[4]

As I understand it, the logarithm being a monotonically increasing function allows me to say
1

2
≤ ⅇx ≤ 4

1

2
≤ ⅇx ≤ 4

Meanwhile the little trick in numbered line (10) on p. 631 confers
Abs[ⅇz] ⩵ ⅇx

So that
1

2
≤ Abs[ⅇz] ≤ 4 ⟹

1

2
≤ Abs[w] ≤

4 by the problem description. So in the w -−plane it becomes an annulus,

with the radii of the two circles being
1
2
and 4.

N[-−Log[2]]

-−0.693147

N[Log[4]]

1.38629
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rangein = Range[-−.69, 1.38, 0.15]

{-−0.69, -−0.54, -−0.39, -−0.24, -−0.09, 0.06,
0.21, 0.36, 0.51, 0.66, 0.81, 0.96, 1.11, 1.26}

Table[{ⅇn},
{n, {-−0.69`, -−0.5399999999999999`, -−0.38999999999999996`, -−0.24`,

-−0.08999999999999997`, 0.06000000000000005`, 0.20999999999999996`,
0.3600000000000001`, 0.51`, 0.6599999999999999`,
0.81`, 0.96`, 1.1099999999999999`, 1.26`, 1.38}}];

Flatten[%];

The annulus in the w-plane is a single, undivided annulus, but I thought it would be interest-
ing to see the contributions from various radii in the circle in the z-plane.

-−0.5 0.5 1.0
x Re

-−1

1

2

3

4
y Im

z-−plane

-−4 -−2 2 4
u Re

-−4

-−2

2

4

v Im

w-−plane

19. 1 < Abs[z] < 4,
π

4
< θ ≤

3 π

4
, w = Log[z]

Clear["Global`*⋆"]

Tracing the influence of the mapping transformation on the z-plane, I see that

Rⅇⅈ ϕ ⩵ w ⩵ f[z] ⩵ fr ⅇⅈ θ ⩵ Log[z] ⌊z=r ⅇⅈ θ ⩵

Logr ⅇⅈ θ ⩵ Log[r] + Logⅇⅈ θ ⩵ Log[r] + ⅈ θ

and proceed to insert it directly into plot commands. In the z-plot I don’t bother to show 
radial boundary lines this time.
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-−4 -−2 2 4
x Re

-−4

-−2

2

4

y Im

z-−plane

-−2 -−1 0 1 2 3
u Re

0.5

1.0

1.5

2.0

2.5

3.0
v Im

w-−plane

21 - 26 Failure of conformity
Find all points at which the mapping is not conformal. 

21.  A cubic polynomial

Clear["Global`*⋆"]

As prompted by the s.m. a general cubic polynomial looks like
gcubp = a3 z3 + a2 z2 + a1 z + a0
a0 + z a1 + z2 a2 + z3 a3

First get the derivative
inter = D[gcubp, {z}]

a1 + 2 z a2 + 3 z2 a3

Then solve this for roots
Solve[inter ⩵ 0, {z}]

z →
-−a2 -− a22 -− 3 a1 a3

3 a3
, z →

-−a2 + a22 -− 3 a1 a3

3 a3


The above notation is according to the s.m., which is not the same as the text. Using the 
text notation,
gcubt = z3 + a z2 + b z + c

c + b z + a z2 + z3
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tinter = D[gcubt, {z}]

b + 2 a z + 3 z2

Solve[tinter ⩵ 0, z]

z →
1

3
-−a -− a2 -− 3 b , z →

1

3
-−a + a2 -− 3 b 

The above roots make the derivative equal to zero, and that is what constitutes nonconfor-
mality.

23.
z + 1

2

4 z2 + 2

Clear["Global`*⋆"]

yeeha =
z + 1

2

4 z2 + 2
1
2
+ z

2 + 4 z2

yeehaD = D[yeeha, {z}]

-−
8 z  1

2
+ z

2 + 4 z22
+

1

2 + 4 z2

Together[yeehaD]

1 -− 2 z -− 2 z2

2 1 + 2 z22

Solve1 -− 2 z -− 2 z2 ⩵ 0, z

z →
1

2
-−1 -− 3 , z →

1

2
-−1 + 3 

The above green cell matches the text answer in content, as demonstrated by the following 
two cells.

PossibleZeroQ
-−1 + 3 

2
-−
1

2
-−1 + 3 

True
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PossibleZeroQ
-−1 -− 3 

2
-−
1

2
-−1 -− 3 

True

25.  Cosh[z]

Clear["Global`*⋆"]

coshD = D[Cosh[z], {z}]

Sinh[z]

Solve[coshD ⩵ 0, z]

{{z → ConditionalExpression[2 ⅈ π C[1], C[1] ∈ Integers]},
{z → ConditionalExpression[ⅈ π + 2 ⅈ π C[1], C[1] ∈ Integers]}}

The above green cell constant C[1] offers enough flexibility to match all the answers in the 
text.

29 - 35 Magnification ratio, Jacobian
Find the magnification ratio, M. Describe what it tells you about the mapping. Where is 
M=1? Find the Jacobian J.

29. w =
1

2
z2

Clear["Global`*⋆"]

Examining the Magnification ratio amounts to looking at the absolute value of the first 
derivative.

f[z_] =
1

2
z2

z2

2

mdog = D[f[z], {z}]

z

The cell below tells me that magnification equals 1 on the unit circle,

ComplexExpand[Abs[x + ⅈ y]]

x2 + y2

The grid below shows some points close to the origin along with the resulting magnification 
there.
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GridTablex, y, x2 + y2 , {x, -−2, 2}, {y, -−2, 2}, Frame → All

-−2, -−2, 2 2  -−2, -−1, 5  {-−2, 0, 2} -−2, 1, 5  -−2, 2, 2 2 

-−1, -−2, 5  -−1, -−1, 2  {-−1, 0, 1} -−1, 1, 2  -−1, 2, 5 

{0, -−2, 2} {0, -−1, 1} {0, 0, 0} {0, 1, 1} {0, 2, 2}

1, -−2, 5  1, -−1, 2  {1, 0, 1} 1, 1, 2  1, 2, 5 

2, -−2, 2 2  2, -−1, 5  {2, 0, 2} 2, 1, 5  2, 2, 2 2 

The Jacobian, according to numbered line (5) on p. 741, is
Abs[f'[z]]2

Abs[z]2

31. w =
1

z

Clear["Global`*⋆"]

f[z_] =
1

z
1

z

The expression for the Magnification ratio M is
Abs[D[f[z], {z}]]

1

Abs[z]2

ComplexExpand
1

Abs[x + ⅈ y]2


1

x2 + y2

As the cell below shows, the magnification is equal to 1 on the unit circle.

tes[x_, y_] =
1

x2 + y2

1

x2 + y2

The concept of Magnification concerns what the absolute value of the derivative may do to 
various z0 values. Again, taking integers, the following grid shows what magnifications 
result from various x and y values around the origin.
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Grid[Table[{x, y, tes[x, y]}, {x, -−2, 2}, {y, -−2, 2}], Frame → All]

Power::infy: Infiniteexpression 
1

0
 encountered. +

-−2, -−2, 1
8
 -−2, -−1, 1

5
 -−2, 0, 1

4
 -−2, 1, 1

5
 -−2, 2, 1

8


-−1, -−2, 1
5
 -−1, -−1, 1

2
 {-−1, 0, 1} -−1, 1, 1

2
 -−1, 2, 1

5


0, -−2, 1
4
 {0, -−1, 1} {0, 0, ComplexInfinity} {0, 1, 1} 0, 2, 1

4


1, -−2, 1
5
 1, -−1, 1

2
 {1, 0, 1} 1, 1, 1

2
 1, 2, 1

5


2, -−2, 1
8
 2, -−1, 1

5
 2, 0, 1

4
 2, 1, 1

5
 2, 2, 1

8


And the Jacobian is equal to
1

Abs[z]2

2

1

Abs[z]4

33. w = ez

Clear["Global`*⋆"]

f[z] = ⅇz

ⅇz

The cell below shows that the magnification is 1 wherever z=0; as the y value is not 
involved, this means that the entire y-axis has a magnification of 1.

Abs[D[f[z], {z}]]

ⅇRe[z]

The above factor is equal to ⅇx. To see some examples of the magnification around the 
origin, look at
Grid[Table[{x, y, ⅇx}, {x, -−2, 2}, {y, -−2, 2}], Frame → All]

-−2, -−2, 1
ⅇ2
 -−2, -−1, 1

ⅇ2
 -−2, 0, 1

ⅇ2
 -−2, 1, 1

ⅇ2
 -−2, 2, 1

ⅇ2


-−1, -−2, 1
ⅇ
 -−1, -−1, 1

ⅇ
 -−1, 0, 1

ⅇ
 -−1, 1, 1

ⅇ
 -−1, 2, 1

ⅇ


{0, -−2, 1} {0, -−1, 1} {0, 0, 1} {0, 1, 1} {0, 2, 1}
{1, -−2, ⅇ} {1, -−1, ⅇ} {1, 0, ⅇ} {1, 1, ⅇ} {1, 2, ⅇ}

2, -−2, ⅇ2 2, -−1, ⅇ2 2, 0, ⅇ2 2, 1, ⅇ2 2, 2, ⅇ2

As for the Jacobian,
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(ⅇx)2

ⅇ2 x

35. w = Log[z]

Clear["Global`*⋆"]

f[z_] = Log[z]

Log[z]

As the cell below testifies, and the grid corroborates, the magnification equals 1 on the 
unit circle.

Abs[D[f[z], {z}]]
1

Abs[z]

GridTablex, y,
1

Abs[x + ⅈ y]
, {x, -−2, 2}, {y, -−2, 2}, Frame → All

Power::infy: Infiniteexpression 
1

0
 encountered. +

-−2, -−2, 1

2 2
 -−2, -−1, 1

5
 -−2, 0, 1

2
 -−2, 1, 1

5
 -−2, 2, 1

2 2


-−1, -−2, 1

5
 -−1, -−1, 1

2
 {-−1, 0, 1} -−1, 1, 1

2
 -−1, 2, 1

5


0, -−2, 1
2
 {0, -−1, 1} {0, 0,

ComplexInfinB
ity}

{0, 1, 1} 0, 2, 1
2


1, -−2, 1

5
 1, -−1, 1

2
 {1, 0, 1} 1, 1, 1

2
 1, 2, 1

5


2, -−2, 1

2 2
 2, -−1, 1

5
 2, 0, 1

2
 2, 1, 1

5
 2, 2, 1

2 2


As for the Jacobian,
1

Abs[z]

2

1

Abs[z]2

18     17.1 Geometry of Analytic Functions- Conformal Mapping 737.nb


